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ABSTRACT 
A two-dimensional, macroscopic, stationary, finite element model is presented for both laser remelting and 
laser cladding of material surfaces. It considers, in addition to the heat transfer, the important fluid motion 
in the melt pool and the deformation of the liquid-gas interface. The velocity field in the melt is driven 
by thermocapillary forces for laser remelting, but also by forces due to powder injection for laser cladding. 
For a given velocity field within the liquid region, the stationary enthalpy (or Stefan) equation is solved. 
An efficient scheme allows the LU decomposition of the finite element matrix to be performed only once 
at the first iteration. Then, the velocity is updated using the Q1 — P0 element with penalty methods for 
treating both the incompressibility condition and the slip boundary conditions. Numerical results for three 
different processing speeds for both laser remelting and laser cladding demonstrate the efficiency and 
robustness of the numerical approach. The influence of the thermocapillary and powder injection forces 
on the fluid motion and subsequently on the melt pool shape is seen to be important. This kind of 
calculations is thus necessary in order to predict with precision the temperature gradients across the 
solidification interface, which are essential data for microstructure calculations. 

KEY WORDS Laser surface treatments Finite elements Solidification Stefan problem Hydrodynamics Thermo­
capillary convection 

INTRODUCTION 

Laser surface treatments are high precision processes for enhancing the properties of a contact 
surface, without altering the mechanical properties of the bulk material. A fixed laser beam 
produces a melt pool on a moving substrate (laser remelting, see Figure 1). At the same time 
the injection of powder, by means of a carrier gas, into the melt region allows rapid mixing and 
melting in the liquid part (laser cladding, see Figure 2). 

The aim of laser remelting is to induce changes in the microstructure of the surface, whereas 
the aim of laser cladding is to obtain a fusion bond between the substrate and the clad. These 
two processes have already been successfully compared to other classical surface treatments1 

and have achieved industrial acceptance with components such as valves seats and turbine blades 
being nowadays surface treated by laser cladding2,3. Previous theoretical4,5 and numerical6-18 

studies have been made in order to understand solidification processes with convection in the 
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liquid (for instance casting, welding or laser remelting), from a macroscopic point of view. They 
have shown the importance of the fluid flow within the liquid region (due to buoyancy, 
thermocapillary or electromagnetic forces) and its effect on the heat transfer mechanism. 

Laser cladding differs from welding and laser remelting processes because of the impact of 
the gas-powder mixture on the surface of the melt and the melting and mixing of the powder 
in the liquid pool. Recently, Hoadley and Rappaz19 proposed a pure two-dimensional heat 
transfer model in which the powder was assumed to mix rapidly and uniformly in the molten 
region. This enabled the fusion of the powder to be considered, in the heat transfer equation, 
as a uniform heat source, evenly distributed within the liquid. Although the velocity field was 
not explicitly calculated, its effect on the mixing process was thus taken into account. 

The aim of this paper is to present a two-dimensional, macroscopic, stationary, finite element 
model for laser cladding which reflects the main phenomena occurring under the laser beam, 
particularly the effects of both thermocapillary and powder injection forces on the temperature 
and velocity within the melt pool. In the special case when no powder is injected, although this 
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model reduces to classical stationary laser remelting (or laser welding) models8,9,13,14,16,18 our 
finite element approach has shown to be particularly robust and efficient. 

The physical model is described in the next section, the process parameters being the laser 
power reaching the workpiece, the workpiece velocity, the mass flow of powder reaching the 
workpiece (or equivalently the clad height) and the geometry of the gas-powder jet. The stationary 
enthalpy equation coupled with the incompressible Navier-Stokes equations are to be solved 
in the material with the appropriate boundary conditions on the liquid-gas interface (modelling 
thermocapillary and powder injection effects). Moreover, the unknown liquid-gas interface is 
determined from a force balance equation. An algorithm is presented subsequently, which 
uncouples the solution of these three problems. Finally, some numerical results are also presented, 
at different processing speeds, for both laser remelting and cladding. These results demonstrate 
the influence of the velocity field on the shape of the molten region and on the temperature field. 

THE MODEL 

A fixed laser beam melts a material moving at constant horizontal speed V∞. Powder reaches 
the liquid pool at rate , producing a clad of height δ. The calculation domain Ω, with boundary 
∂Ω and unit exterior normal n, is defined as the reunion of the solid region ft, and the liquid 
region Ω1. Γs1 is the solid-liquid interface (with unit normal ns1 towards the liquid), Γsg is the 
solid-gas interface and Γlg is the liquid-gas interface. The unit tangent vector of the boundary 
∂Ω is t and such that the frame (n, t) is directly oriented. As shown in Figure 3, the solid-gas 
interface is horizontal, the three interfaces Γs1, Γsg, Γlg meet at the two triple points P1slg, P2slg 
and the liquid-gas interface is horizontal at point P1slg. 
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This model pertains to a two-dimensional laser cladding situation, stationary in a reference 
frame attached to the laser beam. The two-dimensional assumption corresponds to a situation 
where the laser beam, the gas-powder jet and the workpiece transverse dimensions are large 
compared to the other dimensions. The stationary assumption is relevant when the workpiece 
dimensions are large compared to the dimensions of the calculation domain ft and when 
instabilities in the molten region are neglected (see for instance Reference 20 for a discussion 
concerning instabilities of the molten pool in the case of laser remelting). Contrary to Reference 
19, the powder is assumed to melt instantaneously on the liquid-gas interface. It is then convected 
by the velocity field and mixes with the other liquid. Moreover, in order to simplify the 
presentation of the model, the clad and the substrate are assumed to be made out of the same 
material, a pure metal or a eutectic alloy, exhibiting a plane solid-liquid interface. 

In the sequel, the whole process is split in two different problems: 
• The thermal or phase-change problem which consists in seeking the temperature T in the 

calculation domain Ω and the shape and position of the solid-liquid interface. As usual22-27 

an enthalpy formulation is used in order to avoid tracking the solid-liquid interface. 
• The hydrodynamic problem with unknowns the velocity v1 in the liquid region Ω1 (the 

velocity in the solid being of course reduced to the workpiece speed V∞) and the liquid-gas 
interface shape and position. 

The behaviour of the above unknowns are governed by the three conservation laws for mass, 
momentum and energy, applied on any arbitrary domain contained in Ω. The complete resulting 
set of equations and boundary conditions is now presented. 

The thermal model 
Assuming that the solid and liquid densities are equal to a constant value p and that the 

temperature along the solid-liquid interface Γsl equals the fusion temperature Tsl, the enthalpy 
is introduced: 

(1) 

Here cp is the specific heat and lsl the latent heat per unit mass. The thermal model then 
corresponds to a stationary phase change problem: 

(2) 
v being the velocity field in the workpiece defined as: 

and k being the material thermal conductivity. On the top surface, heating due to the laser beam 
is modelled by a heat flux distribution qL and competes with cooling due to powder injection 
in the liquid: 

(3) 

(4) 
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Here, ny is the second component of the normal n, pp, vp, hp are the powder partial density, 
velocity and enthalpy per unit mass. Assuming that all the powder that reaches the melted pool 
enter into it, the powder partial density pp is then obtained by writing the mass conservation 
of the powder along the liquid-gas interface: 

(5) 

Imposed temperature is prescribed for the boundaries within the material: 
(6) 

At this point it is to be noted that, as the workpiece enthalpy H is discontinuous across the 
solid-liquid interface, see equation (1), (2) has a meaning only in a weak sense. Indeed, assuming 
sufficient regularity of the solid and liquid regions, this equation contains in fact two classical 
diffusion-convection equations in both solid and liquid, coupled with a heat flux balance condition 
on the solid-liquid interface (the so-called Stefan condition26,27). As we will see in the next 
paragraph, the use of a finite element formulation, which derives from the weak formulation 
corresponding to (2), is thus natural and convenient for this kind of problems. 

The hydrodynamic model 
The velocity v, and the pressure p1 in the melt pool satisfy the incompressible Navier-Stokes 

equations with the Boussinesq approximation: 

(7) 
(8) 

where D(v) is the symmetric deformation stress tensor: 

g the gravitational acceleration and b1 the liquid thermal expansion coefficient. On the solid-liquid 
interface, the mass conservation condition together with the adherence condition force the liquid 
velocity to equal the workpiece velocity: 

(9) 
The main difficulty consists now in finding the proper boundary conditions on the liquid-gas 
interface. Applying the mass conservation law between the powder and the liquid reaching the 
interface, we have: 

(10) 

It remains now to write the momentum conservation law. As only the powder enters the liquid, 
the jump of the momentum flux across the interface is reduced to the term: 

Moreover, the gas-powder mixture is assumed to be inviscid and the resultant pressure pgp is 
supposed to be constant along the interface, so that the jump of the stress tensor becomes: 

The surface tension effects induce a normal force proportional to the local interface curvature. lg: 

where ylg is the surface tension coefficient. If the value of ylg varies along the interface, a tangent 
force appears. Assuming that ylg depends on the temperature T only (it may also depend on 
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the concentration if the liquid is a binary alloy), this force is given by: 

The momentum conservation law, projected on both normal and tangent directions, thus writes: 

(11) 

(12) 

where the liquid normal and tangent stresses are defined by: 

As (11) involves the curvature which is a second order differential operator, two boundary 
conditions have to be prescribed at the edges of the liquid-gas interface, namely the two triple 
points P1slg and P2slg. Moreover, as the liquid pressure p1 is defined up to an unknown constant, 
a third condition has to be imposed. Two of these three conditions are given by the geometry 
of the molten pool and express the fact that the two triple points P1slg, P2slg, must lie at height 5 
and zero, respectively, see Figure 3: 

(13) 
The third condition arises from the equilibrium of the surface tensions at one of the two triple 
points and thus requires the corresponding contact angle to be prescribed. These forces depend 
upon the dynamics of the molten pool (see for instance Reference 21 for a discussion of the 
contact angles for hydrodynamic problems) and are dramatically difficult to measure. Thus, for 
the sake of simplicity, we have chosen a flat liquid-gas interface at the left triple point P1slg: 

(14) 
which is the case when the surface tension between the solid and liquid is far less than the surface 
tension between the liquid and air. Please note that the two situations shown in Figure 4 will 
not be considered even though they may be observed in practice. 

This completes the formulation of the physical model. Indeed, the correct number of conditions 
is available on the liquid-gas interface, namely two scalar boundary conditions for the liquid 
velocity plus one to calculate the interface shape, (10), (11), (12). 

Before considering the numerical resolution of these equations, it should be noted that the 
stationary laser remelting models8,9,12,13,14,16,18 can be presented as a particular case of laser 
cladding when no powder is injected (pp — 0, δ = 0) and when condition (14) is replaced by the 
incompressibility condition (or volume conservation condition as p is constant) 

(15) 
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In the case of laser remelting (or welding), experimental observations have shown that the 
liquid-gas free surface oscillates during the treatment, thus requiring a time dependent 
simulation20. In that case, conditions (13) and (15) must be replaced by physical conditions 
involving contact angles21 

NUMERICAL RESOLUTION 

In order to solve the coupled set of equations (1)—(12) corresponding to both thermal and 
hydrodynamic problems, an iterative technique has been developed. The strategy is as follows 
and is illustrated in Figure 5. 
STEP 1: initialization 
Given the mass flow rate of powder reaching the melted pool mp, the fixed clad height δ is 
computed by mass conservation of the total amount of powder involved in the process 
(mp = pV∞δ). An initial guess of the liquid-gas interface shape Γlg is given. 
STEP 2: melt pool shape computation 
The powder partial densities pp, is computed with (5). The coupled enthalpy and Navier-Stokes 
equations are solved. The boundary conditions prescribed on the liquid-gas interface, relative 
to the Navier-Stokes equations are equations (10) and (12). 
STEP 3: liquid-gas interface update 
The new triple points x1slg, x2slg being found, the liquid normal traction σn is calculated and the 
liquid-gas interface shape Γlg is updated with (11). 
STEP 4: convergence 
Steps 2 and 3 are repeated until the relative change on the surface shape is less than a preset 
value, normally 10 -5. 
It is clear that the major task consists in solving, for a given liquid-gas interface, both enthalpy 
and Navier-Stokes equations (step 2). In order to uncouple these two equations, the following 
strategy is used: 

(i) For a given velocity field, the stationary enthalpy (1) is first solved. 
(ii) Then, for a given enthalpy, the velocity field is updated by performing one time step of 

the evolutive Navier-Stokes equations corresponding to (7). 
Each of these two points are discussed in detail in the next two sub-sections, the last 

sub-section being devoted to the calculation of the liquid-gas interface (step 3). 

The enthalpy equation 
Equations (1) and (2) are first rewritten as a Stefan problem22,23,26,27. Introducing the 

Kirshoff transformation K: R → R defined by: 

and the real increasing function β defined by: 

then equations (1), (2) can be rewritten as a stationary Stefan-like problem: 
(16) 
(17) 



68 M. PICASSO AND A. F. A. HOADLEY 



FINITE ELEMENT SIMULATION OF LASER SURFACE TREATMENTS 69 

The boundary conditions (3), (4), (6) now are: 

(18) 

(19) 

(20) 

In the particular case when the specific heat cp and the thermal conductivity k are constant 
in each phase, the expression of the function β reduces to: 

Hsl being an arbitrary reference enthalpy (the β function can be arbitrarily shifted along 
the x-axis). The solution of (16), (17) is obtained by solving the corresponding evolutive 
equation until the stationary solution is reached, with an algorithm proposed and studied 
by Magenes, Nochetto and Verdi27-29 modified in the present context to incorporate 
strong convection fields. Let H° be a first guess of the solution, τ be a time step and ω 
a relaxation parameter satisfying 0 < ω < l/max(β'(X)). The following scheme is repeated 
until convergence: 
For n = 0,1, 2, 3 , . . . find θn+1: Ω → R such that 

(21) 

and then set 
(22) 

For any h > 0, let Qh be a mesh of Ω in quadrangles with side less than h (in fact the 
quadrangles will be used to compute the velocity field). Each quadrangle is cut along one 
diagonal into two triangles and Th denotes the corresponding mesh. The space 
discretization is done by approximating the enthalpy Hn+1 and the modified temperature 
θn+1 with continuous piecewise linear functions on these triangles. We thus need to 
introduce the discrete space 

and the corresponding local interpolant, linear on each triangle. The 
weak formulation corresponding to (21) with the boundary conditions (18), (19) and (20) 
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is then: 

to find with θh = on ∂Ω\ and such that: 

Let J be the number of nodes of the mesh, the nodes lying in Ω and on , 
the nodes lying on and the canonical base of the discrete 

space Vh. Writing θn and Hn in the canonical base: 

the discrete scheme (21), (22) leads to solving the following linear system: 

(24) 

(25) 
and making the correction: 

(26) 
Here M, K, C are the diagonalized mass, stiffness, convection matrices and Q is the 
boundary conditions array defined by: 

(27) 

The advantage of this scheme is now obvious: for a given velocity field v, the LU 
decomposition of the matrix M + (τ/ω)K + τC is performed only once at the beginning 
of the time iterations so that only triangular linear systems are solved afterwards. It is 
important to note that the above scheme corresponds to an implicit treatment of both 
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diffusion and convection terms27-30. Indeed, considering the linear case (constant thermal 
conductivity, specific heat and no latent heat) with no powder injection (pp = 0), it can 
be observed that the function β then reduces to a linear function with slope k/pcp. Then, 
choosing ω = pcp/k, the scheme (24) is an implicit discretization of a diffusion-convection 
equation and therefore has no stability condition. When powder is injected (pp ≠ 0), as 
the boundary condition (19) is treated explicitly and a stability condition, namely 

(28) 

appears. Assuming that the conductivity and the specific heat are constant in the liquid 
this term can be written implicitly, so that condition (28) can be eliminated. 

The Navier-Stokes equations 
In order to avoid tracking the solid-liquid interface, the fluid flow problem is also 

formulated in the whole calculation domain Ω using a penalty method already proposed17, 
studied theoretically4 and numerically10. A source term is added in the momentum 
equation and in the solid region in order to force the velocity in the solid to approximate 
the material velocity: 

where ΕS is a small parameter. A classical penalty method is used for dealing with the 
divergence free constraint31,32, while the imposed normal velocity, (10) is penalized by 
the normal stress, which is a natural condition: 

(29) 

εn being the corresponding penalty parameter. The space discretization is performed by 
using the well-known Q1 — P0 element31,32 (piecewise linear velocity and constant pressure 
on quadrangles) and the discrete space 

is then introduced. In order to compute the new velocity field Vh from the previous one 
vh, one iteration of the evolutive Navier-Stokes equations is performed, the convective 
term being linearized with a Picard (or semi-implicit) method. The weak formulation of 
the problem thus writes: 
fine VhεWh with Vh = V∞ on ∂Ω\(Γsg u Γlg) and such that: 
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Here Th is the discrete temperature: 

and Ωs is the discrete solid region: 
(31) 

Streamline upwind is performed for both the enthalpy and Navier-Stokes equations33 

Normal traction and interface calculation 
After the velocity field has been computed, the normal traction of the liquid σn is 

calculated from (29). A suitable system of coordinates is chosen in order to formulate (11) 
as a differential equation. More precisely, the interface Tlg is parametrised by a function: 

where xlslg and x2slg are the left and right x-coordinates of the two triple points 
guessed as in Figure 5. The curvature can be then expressed as the second order differential 
operator: 

Let F: → R be a function containing all the calculated terms in (11): 

As mentioned previously, the liquid pressure p1 contained in the normal stress σn, is defined 
up to an unknown constant C, so the free surface problem is now to find the 
parameterization: 

→ R and the constant CεR 
satisfying the second order differential equation: 

(32) 
together with the three conditions (13), (14): 

(33) 
In the case of stationary laser remelting (no powder injection, δ = pp = 0) the last condition 
in the above equation must be replaced by equation (15) which writes: 

A modified Newton method is used7 to solve (32). Only the derivative of the curvature 
with respect to y1g is computed. Indeed, the derivatives of the liquid normal stress, powder 
momentum and mixture pressure are avoided. At each Newton iteration, the parametrization 

is thus obtained from the previous one by solving the following problem: 
find satisfying the boundary conditions (33) and CεR such that: 

(34) 
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Here is the Frechet derivative of the curvature and is defined by: 

A standard one-dimensional finite element method is used to discretize (34). 

RESULTS AND DISCUSSION 

The simulation pertains to laser remelting and cladding with a beam with constant intensity 
in the transverse direction (the laser power thus corresponds to a beam with unit width 
in the transverse direction and has to be divided by the longitudinal width in order to be 
compared with three dimensional situations). The physical properties used in the 
calculations correspond to the clad properties (Stellite-6, a cobalt base alloy) and are 
given in Table 1. The laser is centered at x = 0 the longitudinal heat distribution is assumed 
to be Gaussian (it has been shown20 that this kind of distribution is invalid for large 
surface deformation): 

PL being the laser power reaching the workpiece and σL = 0.4 mm the beam dispersion. 
The boundary condition within the material, (6), is set to the classical point source 
analytical solution34: 

where Tamb is the ambient temperature, K0 the modified Bessel function of order zero and 
2a = pcpV∞/k,r = (x2 + y2)1/2. 

In the following, the influence of the processing parameters (the workpiece velocity V∞ 
and the clad height 5) and the liquid-gas physical properties (the surface tension coefficient 
ylg and its derivative dy,lg/dT) on the melt pool shape is discussed. The processing conditions 
chosen for these calculations correspond to those used to obtain Stellite-6 clads onto 
stainless steel with a 1.5 kW CO2 laser. The workpiece velocities vary in that case from 
0.001 to 0.5 m/s and the clad heights from 0.0002 to 0.0013 m. Thus, three different 
workpiece velocities and clad height were chosen for these calculations, setting the laser 
power reaching the workpiece in order to obtain melt pool shapes about 2 mm long (see 
Table 2). For all the following results, the calculation domain Ω is contained between the 
left, right and bottom straight lines x= -0.02 m, x = 0.003 m and y- 0.004 m and the 
substrate top position is y = 0. All the enmeshments contain about 3000 quadrangular 
elements with 2000 elements in a square region under the laser beam. The calculations 
are performed on Silicon Graphics 4D/35 workstations and the CPU time for a complete 
calculation is close to 3 hours but is reduced to 20 minutes if the velocity field is not 
computed. 

Table I Physical data 

Specific heat 
Thermal conductivity 
Density 
Volumic latent heat 
Fusion temperature 

Pcp 
k 
P 
Plsl 

3.53 x 106 

14.7 
8380 

2.5 x 109 

1300 

J /m 3 °C 
W/m°C 
kg/m3 

J/m3 

°C 
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Table 2 Processing parameters 

Vx (m/s) 

0.001 
0.01 
0.1 

Laser remelting 

PL (W/m) 

0.26 x 105 

0.60 x 105 

2.2 x 105 

δ (m) 

0 
0 
0 

Laser classing 

PL (W/m) δ (m) 

0.26 x 105 0001 
0.80 x 105 0.0005 
3.0 x 105 0.0002 

The next subsection is devoted to laser remelting. In a subsequent subsection results 
concerning laser cladding are studied in detail. 

Laser remelting 
The temperature fields in the whole calculation domain are first compared for three 

workpiece velocities (V∞ — 0.001, 0.01, 0.1 m/s). As shown in Figure 6, a thermal boundary 
layer appears ahead of the laser beam when remelting at high speed, indicating that heat 
transfer by convection is then greater than by diffusion. All the following figures are related 
to the phenomena occurring in the melt pool. 

Melt pool shapes are compared in Figure 7, the velocity field being either set to the 
workpiece velocity (v1 = V∞, that is to say no free convection in the melted pool) or 
computed with the hydrodynamic model, (7) to (12). The results clearly indicate that it 
is necessary to evaluate the movements of the liquid in order to predict with precision 
the temperature field under the laser beam and subsequently the solidification speeds, 
which are essential data for the microstructure calculations35. It can also be observed in 
Figure 7 that, as the processing speed increases, the difference between the melt pool 
shapes with and without free convection decreases. 

The influence of the surface tension coefficient ylg and its temperature derivative dy,lg/dT 
on the velocity field in the liquid pool is then studied. For laser remelting, the convection 
field in the melt pool is driven mainly by thermocapillary forces ((12) with pp = 0). As 
the coefficient dylg/dT has negative values for most of the liquid metals, tangent forces 
are induced on the liquid-gas interface, going from the hottest points to the coolest 
regions, namely from the center toward the edge of the melt pool. As shown in Figure 8, 
two opposite vortices take place in the liquid, mixing the fluid, making the temperature 
more uniform and consequently changing the melt pool shape. Moreover, the important 
velocity field induces a normal force on the liquid-gas interface and deforms it. In Figure 
9, the coefficient ylg, which characterizes the stiffness of the interface, has been divided by 
two, leading to a greater interface deformation. In Figure 10, the coefficient dylg/dT has 
been set to a positive value, reversing the fluid flow patterns. Finally, Figures 11 and 12 
represent the streamlines of the velocity field for the other two workpiece velocities, 
V∞ = 0.001 and 0.1 m/s. 

Laser cladding 
In this subsection, the case of laser cladding is studied. The injection stream of powder, 

given by the distribution law pp, is Gaussian, the powder particles are assumed to be at 
ambient temperature when reaching the workpiece and their velocity vp equals 6 m/s. In 
Figure 13, the different melt pool shapes obtained during a typical calculation are shown, 
the powder momentum ppvp being plotted on the interface. Convergence of the splitting 
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algorithm discussed takes about 7 to 15 iterations whether the hydrodynamic calculations 
are performed or not. 

In Figure 14, melt pool shapes are compared, the velocity field in the liquid being either 
reduced to the workpiece velocity or computed using the hydrodynamic model. The results 
clearly demonstrate that, as for laser remelting, convection effects in the melt pool cannot 
be neglected. Nevertheless, the situation is slightly different than in the previous subsection 
because the fluid flow is not driven only by the thermocapillary effects but also by the 
forces associated with powder injection. The next figures show the importance of these 
forces. 

Figure 15 represents the streamlines of the computed velocity field when neglecting the 
tangent forces induced by powder injection, that is to say the term pp(vp·n)(v1 — vp)·t in 
(12). As for laser remelting, the fluid flow is then driven by thermocapillary forces and 
two opposite vortices take place, centered on the hottest point of the melt pool. 

Figure 16 represents the temperature and the streamlines of the compound velocity field 
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when tangent forces due to powder injection are added (the powder momentum ppvp being 
plotted on the liquid-gas interface). For that particular case, powder was injected 
horizontally, inducing an important shear stress and stretching the melt pool. The front 
vortex present in Figure 15 tends to be eliminated, whereas the back vortex is amplified. 

The effect of the surface tension coefficient ylg on the shape of the liquid-gas interface 
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is seen when comparing Figures 17 and 16. The lower is this coefficient, the larger if the 
deformation of the interface (in this case, the interface is mainly deformed by powder 
injection forces). 

Finally, some results are shown for two other workpiece velocities. At low speed 
(V∞ = 0.001 m/s), the effect of powder injection is still important. In Figure 18 the 
streamlines of the velocity field are plotted, either with a standard powder injection angle 
(55°) or with horizontal powder injection. Again, horizontal injection tends to eliminate 
the front vortex and reinforce the back one. At high speed (V∞ = 0.1 m/s), the velocity 
field in the liquid is close to the workpiece velocity and powder injection has a reduced 
effect (see Figure 19). 

CONCLUSIONS 

A model for laser cladding which takes into account the fluid flow in the melt pool has 
been proposed. Numerical results show that both effects due to powder injection and 
thermocapillary forces have to be taken into account in order to predict with precision 
the hydrodynamic phenomena occurring within the melt pool and subsequently the 
temperature field under the laser beam. 
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The use of finite elements techniques have shown to be particularly efficient for this 
kind of strongly non-linear problems, with complex boundary conditions and non-trivial 
calculation domains. As it has been explained, for a given velocity field, the numerical 
method which is used to solve the stationary enthalpy equation corresponds to an implicit 
discretization in time and requires only one LU decomposition of the finite element matrix. 
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Before discussing practical benefits of this model, limitations have to be noted: 
• The assumption concerning the melting of the powder on the interface is crucial and has 

to be validated. Indeed, it is well-known that for special situations, such as tungsten carbide 
clads, the tungsten powder particles do not completely melt within the liquid. 

• Some of the data included in this model, in particular the amount of power absorbed by 
the workpiece, the powder temperature, the amount of powder sticking to the workpiece, 
the powder velocity within the stream of gas, the properties of the liquid-gas interface are 
particularly difficult to obtain and depend on the process conditions36. 

• Finally, the 3D aspects of the phenomena have not been considered in this work but are 
very important in practice. 

Nevertheless, this model offers the processing engineers a means to observe and understand 
the main phenomena occurring in the melted pool. Moreover, it can predict some important 
results of the process such as the increase of dilution (that is to say the depth of remelted substrate 
versus the clad height) due to the fluid motion, the deformation of the interface due to powder 
striking, the time a powder particle spends in the melt pool before being solidified. Finally, it 
has to be mentioned that the hydrodynamic effects predicted by this model have been observed 
using high velocity video techniques37. 
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